Synthesis and characterization of controlled metal nanostructures for electrochemical applications
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Nguyet Doan Name of the doctoral dissertation Synthesis and characterization of controlled metal nanostructures for electrochemical applications Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 177/2016 Field of research Physical Chemistry Manuscript submitted 15 June 2016 Date of the defence 23 September 2016 Permission to publish granted (date) 31 August 2016 Language English Monograph Article dissertation Essay dissertation Abstract Metal nanoparticles synthesed by using wet chemical route and nanostructures by electrodeposition has attracted much attention because their properties differ from those of the same material in bulk form and the ease of the electrodeposition method which allows control of the film thickness.These nanostructures have numerous potential applications in various areas such as biomedical sciences, electrodes, optics, magnetism, energy storage and electrochemistry. In the first part of this thesis, synthesis and properties of cobalt and gold nanoparticles were studied. In order to investigate their size distribution and oxidation with different capping ligands, cobalt nanoparticles were synthesized with the decomposition method.Tridodecyl amine stabilized Co nanoparticles with different sizes (8, 22, and 36 nm) were prepared by thermal decomposition of Co2(CO)8 in dodecane, and e.g. particles with an average diameter of 8 nm and a standard deviation of 8 % were obtained. The oxidation of different sized cobalt nanoparticles was studied. The particles capped with carboxylic acid had become hollow and oxidized throughout, while the tridodecyl amine capped ones appeared to have a small core surrounded by oxidized shell. Gold nanoparticles were used as probes to visualize the surface density of functional molecules on silica. The second part of this thesis was focused on preparing nanostructures and mesostructures using an electrodeposition method. Zn/ZnO macroporous films were synthesized via electrodeposition using polystyrene spheres as a template. Subsequent oxidation of the films at elevated temperature yielded structured ZnO films. The results of this work showed that high quality templated Zn and ZnO films can be electrodeposited from ionic liquid onto both semiconductor (ITO) and metallic (Au) substrates. Pt mesoporous films were synthesized via electrodeposition using a liquid crystalline template method. Mesoporous Pt and Pt@CB were electrodeposited using both galvanostatic and potentiostatic methods from liquid crystal templates resulting in Pt structures with pores in the 3-5 nm size range. The Pt@CB electrocatalyst was shown to have a high potential for direct ethanol fuel cells. Pt mesostructures were applied in fuel cells as anodes. Polarization and power curves for both the commercial Pt and the electrodeposited mesoporous Pt at different temperatures (30 ° C, 50 °C and 70 °C) were studied, showing an increase in the performance with the temperature. All the mesoporous samples showed better or similar performance in the direct ethanol fuel cell in comparison with the commercial Pt sample.Metal nanoparticles synthesed by using wet chemical route and nanostructures by electrodeposition has attracted much attention because their properties differ from those of the same material in bulk form and the ease of the electrodeposition method which allows control of the film thickness.These nanostructures have numerous potential applications in various areas such as biomedical sciences, electrodes, optics, magnetism, energy storage and electrochemistry. In the first part of this thesis, synthesis and properties of cobalt and gold nanoparticles were studied. In order to investigate their size distribution and oxidation with different capping ligands, cobalt nanoparticles were synthesized with the decomposition method.Tridodecyl amine stabilized Co nanoparticles with different sizes (8, 22, and 36 nm) were prepared by thermal decomposition of Co2(CO)8 in dodecane, and e.g. particles with an average diameter of 8 nm and a standard deviation of 8 % were obtained. The oxidation of different sized cobalt nanoparticles was studied. The particles capped with carboxylic acid had become hollow and oxidized throughout, while the tridodecyl amine capped ones appeared to have a small core surrounded by oxidized shell. Gold nanoparticles were used as probes to visualize the surface density of functional molecules on silica. The second part of this thesis was focused on preparing nanostructures and mesostructures using an electrodeposition method. Zn/ZnO macroporous films were synthesized via electrodeposition using polystyrene spheres as a template. Subsequent oxidation of the films at elevated temperature yielded structured ZnO films. The results of this work showed that high quality templated Zn and ZnO films can be electrodeposited from ionic liquid onto both semiconductor (ITO) and metallic (Au) substrates. Pt mesoporous films were synthesized via electrodeposition using a liquid crystalline template method. Mesoporous Pt and Pt@CB were electrodeposited using both galvanostatic and potentiostatic methods from liquid crystal templates resulting in Pt structures with pores in the 3-5 nm size range. The Pt@CB electrocatalyst was shown to have a high potential for direct ethanol fuel cells. Pt mesostructures were applied in fuel cells as anodes. Polarization and power curves for both the commercial Pt and the electrodeposited mesoporous Pt at different temperatures (30 ° C, 50 °C and 70 °C) were studied, showing an increase in the performance with the temperature. All the mesoporous samples showed better or similar performance in the direct ethanol fuel cell in comparison with the commercial Pt sample.
منابع مشابه
Electrochemical Preparation and Characterization of Mn5O8 Nanostructures
Electrochemical synthesis followed by heat-treatment is a facile and easy method for preparation of nanostructured metal oxides. Herein we report nanostructured Mn5O8 prepared through pulse cathodic deposition followed by heat-treatment for the first time. For the preparation of Mn5O8 nanorods, pulse cathodic electrodeposition was first done from 0.005M Mn(NO3)2 at the current density of 5 mA c...
متن کاملSynthesis, Characterization, Electrochemical and Antimicrobial Studies of N4-Macrocycles of Cobalt(II) and Nickel(II) Metal Ions
The precise analysis of redox chemistry of MN4-based macrocyclic complexes is of great importance because of stabilization of unusual oxidation states of metal ions by macrocyclic ligand and thus have various applications in biochemistry, electrochemistry, electrocatalysis, pharmaceuticals etc. In this work, MN4-macrocyclic complexes of Co (II) and Ni(II) transition metal ...
متن کاملSynthesis and Characterization of Novel Modified and Functionalized Silica Nano-particles for Protein Delivery Applications
In this study, the synthesis, characterization and controlled release behavior of new Hollow Silica Nano particles (HSNPs) and Magnetic Silica Nano Particles (MSNPs) were studied. Magnetic Silica Nano particles (MSNPs), as drug delivery vehicles, were synthesized through the coating of Fe3O4 nano-crystals with silica layers. The HSNPs were obtained by removal of Fe3O4 templates with hydrochlori...
متن کاملSynthesis, Characterization and Electrochemical Properties of Lanthanum Oxysulfate Nanoceramic
La2O2SO4 nanoceramic was synthesized via sol-gel method using lanthanum nitrate and thioacetamid as precursors and stearic acid as polymeric precursor. The characterization studies were conducted by X-ray diffraction, energy dispersive X-ray spectroscopy and scanning electron microscopy. The result showed that the synthesized sample belongs to monoclinic structure with the average sizes between...
متن کاملEffects of deep eutectic solvents in preparation of nanoparticles TiO2
Deep eutectic solvents (DESs) have always been attractive to scientists due to their wide range of applications, a great interest in diverse fields including nanotechnology due to their unique properties as new green solvents. It used large-scale for chemical and electrochemical synthesis nanomaterial. DESs have had also active role in improving the size and morphology of nanomaterial during sy...
متن کاملSynthesis, Characterization and Investigation of Photocatalytic Activity of transition metal-doped TiO2 Nanostructures
In this work, M-doped TiO2 nanostructures (M: Fe, Co and Ni) were synthesized by reverse microemulsion method. The as-prepared products were analyzed by different techniques such as scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The effect of various dopants (Fe, Co and Ni) on ba...
متن کامل